Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.09.21266954

ABSTRACT

The aim of this study was to identify the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n=583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021.Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Nail-Patella Syndrome
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.13.21260273

ABSTRACT

During March to June 2021 India has experienced a deadly second wave of COVID19 with an increased number of post vaccination breakthrough infections reported across the country. To understand the possible reason of these breakthroughs we collected 677 clinical samples (throat swab/ nasal swabs) of individuals who had received two doses (n=592) and one dose (n=85) of vaccines (Covishield and Covaxin,) and tested positive for COVID19, from 17 states/Union Territories of country. These cases were telephonically interviewed and clinical data was analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both the cases. Analysis of both the cases determined that 86.69% (n=443) of them belonged to the Delta variant along with Alpha, Kappa, Delta AY.1 and Delta AY.2. The Delta variant clustered into 4 distinct sub-lineages. Sub-lineage I had mutations: ORF1ab, A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, A6319V and N G215C; Sub lineage II : ORF1ab P309, A3209V, V3718A, G5063S, P5401L and ORF7a L116F; Sub lineage III : ORF1ab A3209V, V3718A, T3750I, G5063S, P5401L and Spike A222V; Sub-lineage IV ORF1ab P309L, D2980N, F3138S and spike K77T. This study indicated that majority of the clinical cases in the breakthrough were infected with the Delta variant and only 9.8% cases required hospitalization while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality.


Subject(s)
COVID-19 , Breakthrough Pain
3.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202004.0469.v1

ABSTRACT

The technology-driven world of the 21st century is currently confronted with a major threat to humankind in the form of the coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As of April 22, 2020, COVID-19 has claimed 169, 006 human lives and had spread to over 200 countries with more than 2,471,136 confirmed cases. The perpetually increasing figures associated with COVID-19 are disrupting the social and economic systems globally. The losses are unmatched and significantly higher compared to those from previously encountered pathogenic infections. Previously, two CoVs (SARS-CoV and Middle East respiratory syndrome-CoV) affected the human population in 2002 and 2012 in China and Saudi Arabia, respectively. Based on genomic similarities, animal-origin CoVs, primarily those infecting bats, civet cats, and pangolins, were presumed to be the source of emerging human CoVs, including the SARS-CoV-2. The cohesive approach amongst virologists, bioinformaticians, big data analysts, epidemiologists, and public health researchers across the globe has delivered high-end viral diagnostics. Similarly, vaccines and therapeutics against COVID-19 are currently in the pipeline for clinical trials. The rapidly evolving and popular technology of artificial intelligence played a major role in confirming and countering the COVID-19 pandemic using digital technologies and mathematical algorithms. In this review, we discuss the noteworthy advancements in the mitigation of the COVID-19 pandemic, focusing on the etiological viral agent, comparative genomic analysis, population susceptibility, disease epidemiology, animal reservoirs, laboratory animal models, disease transmission, diagnosis using artificial intelligence interventions, therapeutics and vaccines, and disease mitigation measures to combat disease dissemination.


Subject(s)
COVID-19 , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL